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Abstract
This paper highlights a previously unnoticed property of commonly-used discrete
choice models, which is that they feature parallel demand curves. Specifically, we
show that in additive random utility models, inverse aggregate demand curves shift
in parallel with respect to variety if and only if the random utility shocks follow
the Gumbel (Type 1 Extreme Value) distribution. Using results from Extreme Value
Theory, we provide conditions for other distributions to generate parallel demands
asymptotically, as the number of varieties increases. We establish these results in the
benchmark case of symmetric products, illustrate them using numerical simulations
and show that they hold in extended versions of the model with correlated tastes and
asymmetric products. Lastly, we provide a “proof of concept” of parallel demands as
an economic tool by showing how to use parallel demands to identify the change in
consumer surplus from an exogenous change in product variety.
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1 Introduction

This paper shows that some commonly-used discrete choice models satisfy a par-
allel inverse aggregate demand property–hereafter referred to as “parallel demands”.
Specifically, inverse aggregate demand curves shift vertically in parallel in response to
an exogenous change in the number of varieties in a market. In this paper we show that
this property holds for the Logit model and some of its Generalized Extreme Value
(GEV) distribution variants. In additive random utility models (ARUM) featuring
i.i.d. random utility shocks, this means that the random utility shocks are distributed
according to the Gumbel (Type 1 ExtremeValue) distribution. In fact, we show that the
Gumbel distribution is both a necessary and sufficient condition for parallel demands
in random utility models. As far as we know, this is a previously-unnoticed feature of
this class of models, and as a result this paper focuses on characterizing this property
theoretically and showing how it can be used in an economic application to identify the
change in consumer surplus associated with an exogenous change in product variety.

In order to develop and build intuition, Sect. 2 considers an additive random utility
model with symmetric products and prices and an outside option. Theorem 1 estab-
lishes that the Gumbel distribution is necessary and sufficient for parallel demands.
Next, we show that for a broad set of distributions of the random utility shock, inverse
aggregate demand curves are asymptotically parallel; that is, the aggregate demand
curves approach parallel demands as the number of varieties increases (Theorem 2).
This result comes directly fromExtremeValue Theory (EVT): when the random utility
shocks are independent and identically distributed, the distribution of the maximum
order statistic converges to aGumbel distribution for awide range of distributions. This
means that assuming parallel demandsmay be a useful approximation inmanymarkets
featuring a large number of varieties. We illustrate the accuracy of this approxima-
tion result using numerical simulations, and we find that convergence happens fairly
quickly.

In Sect. 3, we extend the results in Theorems 1 and 2 in several ways. First, we
extend the baseline model to allow for correlated tastes, which allows for differential
substitutabilitywithin themarket that has product variety, relative to the outside option.
This extension allows us to accommodate the standard Nested Logit model as a special
case (Cardell 1997;McFadden 1978).We show that in this extendedmodel theGumbel
distribution is necessary and sufficient for parallel demands (Proposition 1). Second,
we extend our results to allow for asymmetric products, since our baseline model
assumes symmetric products and prices for simplicity. This extension allows us to
accommodate a random utility model with unobserved product heterogeneity as in
Berry (1994). The inverse aggregate demand curve is straightforward to define in the
symmetric products model. When prices are asymmetric, however, we instead rely on
the distribution of the maximal willingness-to-pay for any of the available varieties
rather than the aggregate demand curve, and we provide necessary and sufficient
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conditions for when this distribution shifts in parallel, just as the inverse aggregate
demand curve shifts in parallel in our baseline symmetric productsmodel (Theorem3).
Theorem 4 extends the the asymptotic result of Theorem 2 to the asymmetric case.

Lastly, in Sect. 4, we show how to use the parallel demands property to identify
the change in consumer surplus from an exogenous change in variety. In our baseline
model with symmetric products, graphically the change in consumer surplus is the
area between the inverse aggregate demand curves before and after a change in variety.
Thus, the change in consumer surplus–what we call the “variety effect”–is the area
between these curves. Intuitively, a key feature of the parallel demands property is that
identifying the “vertical gap” between the two inverse aggregate demand curves (at two
different variety levels) at any one location on the demand curve is sufficient to identify
the full area between the two demand curves. Proposition 3 provides a graphical
representation of the identification of this vertical gap under parallel demands. It
shows that several parameters are sufficient to calculate the variety effect. First, one
needs to identify the sensitivity of demand to price, holding variety fixed. Second, one
needs to identify the change in price and output in response to an exogenous change
in variety. Jointly, under parallel demands, these parameters are sufficient to identify
the change in consumer surplus. Thus, the parallel demands property–which has a
rigorous microfoundation based on the theoretical results in this paper–can be used
to identify the change in consumer surplus stemming from a change in variety.1 We
next extend these results to cover the case of asymmetric products. When products
are heterogeneous, we require an additional technical assumption that prices move
uniformly after a change in variety. We show that under this assumption, a similar
set of parameters identify the variety effect (Proposition 5). Since our approach to
identifying changes in consumer surplus is based on aggregate demand, it is perhaps
not surprising that we obtain identification by either assuming symmetric products
or correlated prices–these are precisely the two scenarios highlighted in Nevo (2011)
whendiscussing identificationof aggregate demandand theproblemof dimensionality.

This paper contributes to research that explores the theoretical properties of dis-
crete choice models and the theoretical connections between these models and other
economic properties. Perhaps most closely related to this paper is Anderson and
Bedre-Defolie (2019) who consider a multi-product monopolist who chooses vari-
ety and price. They show that for asymmetric Multinominal Logit demand, the inverse
demand shifts in parallel when the total variety increases and use this property to show
that the monopolist chooses the socially optimal variety for a given total quantity. In
terms of Spence’s analysis of optimal quality provision (here phrased as product line
length), the average andmarginal consumer valuations coincide so that the monopolist
chooses the right number of products under the Spence criterion, given total output.
Another related paper is Anderson et al. (1987), which describes the formal connection
between a Logit random utility model and an aggregate demand system featuring a
representative agent with Constant Elasticity of Substitution (CES) preferences. This
paper provides a formal connection between specific assumptions on the distribution

1 One might speculate that since the assumed parallel shift in “ aggregate demand” in an ARUM model
amounts to assuming Logit demand, it is more direct to compute the effect on consumer surplus using the
utility function directly. However, our results show that parallel demands are a good approximation for a
larger set of distributions of the random utility shock beyond Logit.
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of the shocks in additive random utility models and the resulting aggregate inverse
demand curve that shifts in parallel with exogenous changes in product variety. Our
theoretical approach makes use of Extreme Value Theory, which has been used in an
additive random utility context in Gabaix et al. (2016) to show that there can exist high
markups in large markets in equilibrium that are insensitive to the degree of competi-
tion. Our paper also relates to results in Kroft et al. (2021) who show that the parallel
demands property is useful for identifying the love-of-variety from the passthrough
of taxes under free entry, and our paper contributes to the literature that studies the
foundations and properties of widely used logit model in a discrete choice setting
(Breitmoser 2021; Echenique and Saito 2019; Matejka and McKay 2015). Lastly, our
application of these theoretical results to identifying the benefits to consumers from
greater variety relates to a large theoretical and empirical literature in international
trade and industrial organization (see Arkolakis et al. 2008; Berry and Waldfogel
1999; Broda andWeinstein 2006; Dhingra and Morrow 2019; Dixit and Stiglitz 1977;
Feenstra 1994; Mankiw and Whinston 1986; Romer 1994; Spence 1976a, b).

2 Parallel demands: symmetric products

In this section,we consider a discrete choicemodelwith symmetric products and derive
necessary and sufficient conditions under which inverse market demand curves, eval-
uated at different levels of product variety, are exactly parallel. Next, we characterize
a class of models where parallel demands is likely to be a good approximation.

2.1 Necessary and sufficient conditions

Consider a unit mass population of ex ante identical and independent consumers
indexed by i . Consumers either choose to purchase a single product in the market
j ∈ {1, . . . , J }, where J is defined as the number of product varieties available, or
choose the outside option j = 0.

Preferences. The indirect utility of individual i who purchases product j is given
by:

ui j (yi , p j ) = α(yi − p j ) + δ j + εi j (1)

where the scalarα is themarginal utility of income, yi is consumer i ′s income, p j is the
price of good j , δ j is the quality of product j which captures vertical differentation and
εi j is an idiosyncratic match value between consumer i and product j which captures
heterogeneity in tastes across consumers and products and the degree of horizontal
differentiation. The utility of individual i who chooses the outside option is given by
ui0 = αyi + εi0.

Product-Level Demand. The indirect utility function in equation (1) generates
demand for product j , q j (p1, . . . , pJ ) : RJ+ → R+, which we express as

q j (p1, . . . , pJ ) = P

(
ui j (yi , p j ) = max

j ′∈{0,...,J }
ui j ′(yi , p j ′)

)
(2)
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Aggregate Demand. We express aggregate demand for all products excluding the
outside good, when J varieties are available, as Q(p1, . . . , pJ ) : RJ+ → R+, which
takes the form

Q(p1, . . . , pJ ) =
J∑

j=1

q j (p1, . . . , pJ ) (3)

The share of the outside good is q0 = 1 − Q. We now impose the following
symmetry assumption.

Assumption 1 We assume that (1) the random utility shocks (εi j )
∞
j=1 are continu-

ously, independently, and identically distributed (i.i.d.), and are independent of the
distribution of εi0, yi , and (δ j )

∞
j=1; (2) product qualities are symmetric, δ j = δ.

Assumption 1 implies that product prices will be identical in equilibrium (p j =
pk, ∀ j, k ∈ {1, . . . , J }) under the additional assumption of identical production
costs.2 With symmetric prices, we can express the demand function as q(p, J ) :
R
2+ → R+ and the aggregate demand function Q(p, J ) : R2+ → R+ respectively as

q(p, J ) = P

(
ui j (yi , p) = max

j ′∈{0,...,J }
ui j ′(yi , p)

)

Q(p, J ) = Jq(p, J )

Next, noting that Q(p, J ) is a strictly decreasing function with respect to p, we
can invert it to obtain the inverse aggregate demand function P(Q, J ) : R2+ → R+.
We now introduce our definition of parallel demands with symmetric products.

Definition 1 The discrete choice model with symmetric products is said to give rise
to parallel demands if for all J0, J1 �= J0, and Q

∂P

∂Q
(Q, J0) = ∂P

∂Q
(Q, J1) (4)

where P(Q, Jt ), t ∈ {0, 1} is the inverse aggregate demand function, and J0 and J1
are any numbers of product varieties. An equivalent definition of parallel demands
that we will make use of below is Q(p, J0) = Q(p + d(J0, J1), J1); in other words,
there exists some index d(J0, J1), such that output is the same when the price is p
with J0 varieties or the price is p + d(J0, J1) with J1 varieties.

We now state our first theorem using Definition 1 and Assumption 1.

Theorem 1 Suppose that Assumption 1 holds, prices are symmetric and εi0 follows
a continuous distribution. Then a necessary and sufficient condition for parallel
demands (Definition 1) is that the random utility shocks (εi j )

∞
j=1 in equation (1) fol-

low a Gumbel distribution G(x) = e−e
− x−μ

β
for some location and scale parameters

μ ∈ R and β > 0.

2 We do not explicitly model market equilibrium in this paper, but symmetric prices are achieved in
equilibrium (Nash in prices) when firms have identical costs as shown in Anderson and Palma (1992).
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Proof See Appendix. �	
As an illustration, in equation (1), if εi0 is alsoGumbel, then this model corresponds

to a multinomial Logit model in which there are J0 +1 products including the outside
option. For any j ∈ {1, . . . , J0}

q(p, J0) = eδ−α p

1 + J0eδ−α p

Aggregate demand is equal to

Q(p, J0) = J0eδ−α p

1 + J0eδ−α p

Thus, the inverse aggregate demand curve of the multinomial Logit model is given by

P(Q, J0) = δ

α
+ 1

α
log J0 − 1

α
log

(
Q

1 − Q

)

We verify that ∂P
∂Q (Q, J0) = − 1

α
1
Q

1
1−Q = ∂P

∂Q (Q, J1) and so Definition 1 is

satisfied. Equivalently, note that Q(p, J0) = J0eδ−α p

1+J0eδ−α p = J1eδ−α(p+d(J0,J1))

1+J1eδ−α(p+d(J0,J1)) =
Q(p + d(J0, J1), J1) for d(J0, J1) = 1

α
log

(
J1
J0

)
.

2.2 Asymptotic approximation as J grows large

Theprevious section showed thatGumbel randomutility shocks are both necessary and
sufficient for parallel demands in the case of symmetric products. UsingExtremeValue
Theory,wenowshow that there is a large class of randomutility shocks beyondGumbel
that admit parallel demands asymptotically (as J grows large). The additive random
utility models in this class have in common that the distribution of the maxima of the
shocks is asymptotically Gumbel, which implies that the inverse aggregate demand
curves are asymptotically parallel. We now define a class of models that admit this
asymptotic approximation, and we provide a sufficient condition to show that a given
additive random utility model is in this class.

Definition 2 Let (εi j ) be i.i.d. distributed according to a continuous CDF F .Following
Resnick (1987), F is in the domain of attraction of the Gumbel distribution if and only
if there exist sequences (an, bn) of real numbers such that Fn(anx + bn) → G(x) for
all x , where G(x) = e−e−x

is the standard Gumbel distribution.

Lemma 1 Let x0 be the supremum of the support of a CDF F that is twice continuously
differentiable. If F satisfies limx→x0

F ′′(x)(1−F(x))
F ′2 = −1 then F is in the domain of

attraction of the Gumbel distribution.

See Resnick (1987) for a proof of Lemma 1 and a full characterization of the
domain of attraction of the Gumbel distribution. Although the characterization of the
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domain of attraction is outside the scope of the paper, it is worth mentioning the
important result in statistics (the Fisher–Tippett–Gnedenko theorem) that plays a role
akin to the Central Limit Theorem for Extreme Value theory. The result states that for
a sequence of i.i.d. random variables Xi , letting Mn = max

{
X1,X2, . . . , Xn

}
then

if a sequence of real numbers (an,bn) exists such that limn→∞ P

(
Mn−bn

an

)
= F(x),

where F is a non-degenerate CDF, then F is either Gumbel, Fréchet or Weibull. A
useful intuition is that if the tails of the random utility shocks (εi j ) are very “thin” the
resulting converging distribution is Weibull, while if they are “heavy” the distribution
of the maxima converges to Fréchet. Gumbel is the intermediate case that gives rise to
parallel demands. For our purposes Lemma 1 is enough to show that some common
distributions fall into the Gumbel domain of attraction.

The domain of attraction of the Gumbel distribution includes the Normal N (μ, η2),
Exponential, Lognormal, Gamma, Chi-square, and Weibull distributions, but does
not include heavy-tailed distributions like the Cauchy, Fréchet, Pareto or Student
distributions nor does it include short-tailed distributions like the Beta and Uni-
form distributions. The next theorem shows that inverse aggregate demands become
“asymptotically” parallel as variety increases, for any additive random utility model
with shocks in the Gumbel domain of attraction.

Theorem 2 Let the random utility shocks (εi j ) be i.i.d. and distributed according to
F in the domain of attraction of the Gumbel distribution. Then for any ε > 0, there
exists large enough J0 such that for all J1 > J0, there exists d(J0, J1) such that for
all p ∈ R+ we have

|Q(p, J0) − Q(p + d(J0, J1), J1)| < ε.

Therefore the inverse demands are approximately parallel P(Q, J1) ≈ P(Q, J0) +
d(J0, J1) for all Q, for large enough J0 and J1.

Proof See Appendix. �	
Later in the paper we assess the approximation result in Theorem 2 by numerically

simulating different additive random utility models and considering the effect of an
exogenous change in the number of varieties on consumer surplus, using the exact
formulas for consumer surplus in additive random utility models and using a reduced-
form approach that assumes demands are parallel.

3 Generalizations and extensions: correlated tastes and asymmetric
products

In this section, we generalize the model in 2.1 to a Logit model with correlated tastes,
andwe also consider amodelwith asymmetric products.While preserving the Extreme
Value distribution of consumers’ tastes within the inside market, the model with cor-
related tastes in many cases better captures the substitution patterns of products by
allowing different substitutability within the variety market relative to the outside

123



K. Kroft et al.

option and correlated tastes across products within the variety market. We show that
in this model, we continue to obtain parallel demands when the distribution of random
utility shocks satisfies the necessary and sufficient condition in Theorem 1. When we
extend to asymmetric products, we are also able to obtain analogous results.

3.1 Logit model with correlated tastes

Similar to the multinomial Logit model, we consider a population of statistically iden-
tical and independent consumers indexed by i of mass unity who choose to purchase
a single product j ∈ {1, . . . , J } or the outside option j = 0. We extend the baseline
model to allow preferences across products to be correlated within individuals.

Preferences. The indirect utility of individual i who purchases product j is given
by:

ui j (yi , p j ) = α(yi − p j ) + δ j + (1 − σ)νi + σεi j (5)

where (1 − σ)νi + σεi j is the idiosyncratic match value between consumer i and
product j , which captures heterogeneity in tastes across consumers and products,
and correlation in tastes across products. When σ = 1 and εi j follows the Gumbel
distribution, we obtain the Logit model and when σ = 0, consumer tastes for all
products in the inside market are perfectly correlated. Thus, the parameter σ captures
the degree of correlation in consumer preferences across products of the insidemarket.
The utility of individual i who chooses the outside option is given by ui0 = αyi + εi0.
Similar to the Logit model, we make the following assumption.3

Assumption 2 We assume that (1) for j �= 0, the random utility shocks (εi j ), j =
1 . . . J are continuously, independently and identically distributed (i.i.d.) and inde-
pendent of εi0, yi , νi , and δ j , j = 1 . . . J , but we allow εi0 to be correlated with νi ; (2)
product qualities and prices are symmetric δ j = δ and p j = p. The next proposition
extends the result in Theorem 1 to cover correlated tastes.

Proposition 1 Suppose that Assumption 2 holds. Then, a necessary and sufficient con-
dition for parallel demands (Definition 1) is that the random utility shocks (εi j ) in
equation (5) follow a Gumbel distribution.

Proof See Appendix. �	
The logic of the proof is the following: since the term (1 − σ)νi does not vary across
products, we can use a location normalization for utility and move this term into the
outside option. Then, we can apply the same arguments in the proof of Theorem 1.
This explains why it is not necessary to impose a specific functional form assumption
on the distribution for (1 − σ)νi . While the proposition does not require a specific
distribution, we can use the Nested Logit model as a special case of this model to
illustrate this result.

3 As in Sect. 2, we do not model the market equilibrium. Instead, we assume symmetric prices directly,
which would be achieved as an equilibrium outcome in a Nested Logit demand model when firms have
identical costs, following Anderson and Palma (1992).
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In the Nested Logit model, the random utility shocks (εi j ) in equation (5) are drawn
from the Gumbel distribution, and (1 − σ)νi has the distribution derived in Cardell
(1997). In our case, there are two nests: one which includes j = 1, . . . , J , and another
nest which includes only the outside option j = 0.4 In theNested Logitmodel, product
demand is:

q(p, J ) = Jσ−1eδ−α p

1 + Jσ eδ−α p
.

In turn, aggregate demand is equal to:

Q(p, J ) = Jσ eδ−α p

1 + Jσ eδ−α p
.

Inverting aggregate demand, the inverse aggregate demand curve is given by:

P(Q, J ) = δ

α
+ σ

α
log J − 1

α
log

(
Q

1 − Q

)
.

Thus, we see that the Nested Logit model (like the symmetric products Logit model
above) satisfies Definition 1 since ∂P

∂Q (Q, J0) = − 1
α

1
Q

1
1−Q = ∂P

∂Q (Q, J1) or equiva-

lently d(J0, J1) = σ
α
log

(
J1
J0

)
.

3.2 Asymmetric products

Assumptions 1 and 2 impose symmetric products and prices, which leads to clean
results but may limit the generality of the model. We now extend our results by con-
sidering asymmetric products so that δ j �= δk and p j �= pk for j �= k, and we continue
to allow for an outside option as in the previous sections. In order to characterize par-
allel demands in this general model, we impose a technical assumption that we use in
Theorem 3 below.

Assumption 3 We assume that (1) for j �= 0, the random utility shocks (εi j )
∞
j=1 are

continuously, independently and identically distributed (i.i.d.) and independent of εi0
which has a continuous distribution; (2) (δ j )

∞
j=1 is a deterministic sequence of real

numbers, and there exists a real number K > 0 such that all the quality parameters
are bounded: δ j ∈ [0, K ] for all j .

In the case of symmetric products and prices considered above, we were able to
invert the aggregate demand since there was a mapping from aggregate quantity to
a single (uniform) price at a given level of product variety. This inverse aggregate
demand curve corresponded to the distribution across consumers of their maximum
willingness-to-pay (WTP) for any level of product variety. When prices and products

4 See Cardell (1997) for the class of distributions, termed C(·) distributions, which makes the combined
idiosyncratic shocks distributed Type I Extreme Value, and thus allows us to write the demand function in
a closed form.
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are asymmetric it is no longer straightforward to characterize the inverse aggregate
demand curve. Thus, with asymmetric products we instead state our results in terms
of the distribution of WTP rather than in terms of aggregate demand. In particular we
study the distribution of the random variable max j∈{0,...,J } wtpi j , where wtpi j (δ j ) ≡
δ j+εi j−εi0

α
. We now introduce the definition of parallel shifts in WTP.

Definition 3 Let WT Pi (J ) ≡ max j∈{1,...,J } wtpi j (δ j ). The discrete choice model in
equation with asymmetric products is said to give rise to parallel shifts in willingness-
to-pay (WTP) if for all J1 �= J0, there exists d(J0, J1) ∈ R, such that for all x ∈ R:

P (WT Pi (J0) ≤ x) = P (WT Pi (J1) ≤ x + d(J0, J1)) .

In particular, when J1 > J0, if consumers value variety, then we expect that
d(J0, J1) > 0.

With this definition of parallel WTP shifts, we can now state the theorem that
generalizes Theorem 1 to the case of asymmetric products.

Theorem 3 Adiscrete choicemodel with asymmetric products satisfying Assumption 3
gives rise to parallel shifts in WTP (Definition 3) for all models satisfying Assump-
tion 3 if and only if the random utility shocks (εi j )

∞
j=1 follow a Gumbel distribution

(independently of the distribution of εi0).

Proof See Appendix. �	
Note that Theorem 3 lets us reinterpret Definition 3 in terms of aggregate demand.

Assuming Gumbel shocks, Theorem 3 implies that we also get parallel shifts in con-
sumer surplus max j∈{1,...,J } wtpi j (δ j − α p j ) (by substituting δ̂ j = δ j − α p j ) and so
the shift d(J0, J1) can be seen as either a horizontal shift in the CDF of WT Pi (J0) or
a vertical shift of the following function:

Q(s) ≡ Q(p1 + s, . . . , pJ + s, J0) = P

(
max

j∈{1,...,J } wtpi j (δ j − α
(
p j + s

)
) ≥ 0

)

which maps aggregate demand as a function of the price index s. Lastly, as in the
symmetric case, we can also use Extreme Value Theory to show that there is a larger
class of models that admit parallel WTP asymptotically.

Theorem 4 Suppose Assumption 3 holds. Let (εi j )
∞
j=1 be i.i.d. and distributed with

CDF F in the domain of attraction of the Gumbel distribution. Furthermore, assume
there exists (αn, βn) and a nondegenerate CDF H such thatΠn

j=1F(αnx+βn−δ j ) →
H(x) for all x.5 Then for any ε > 0, there exists large enough J0 such that for all
J1 > J0, there exists d(J0, J1) such that for all x ∈ R

|P (WT Pi (J0) ≤ x) − P (WT Pi (J1) ≤ x + d(J0, J1))| < ε.

5 This second assumption is satisfied automatically for sequences where (δ j )
∞
j=1 is non-increasing or

non-decreasing. The condition may also be violated for alternating sequences. A counterexample can be
constructed by taking δ = 0 or δ = K for alternate periods of increasing length. Therefore this assumption
constrains the variation in the vertical differentiation parameter of the new varieties that can enter themarket.
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Proof See Appendix.

The technical result in Theorem 4, extends Theorem 2 to the maxima of non i.i.d.
random variables. In the mathematics and statistics literature, it has proven difficult
to extend the Fisher–Tippett–Gnedenko theorem to non i.i.d sequences of random
variables. In particular, Kreinovich et al. (2015) show the impossibility of a simple
generalization of the Fisher–Tippett–Gnedenko theorem when random variables are
not identically distributed and contrast it to the Central Limit Theorem where this is
possible. In our particular case, we are able to show that when the sequence of random
variables is composed of mean shifts of the same CDF in the domain of attraction of
the Gumbel distribution, the asymptotic theorem obtains.

The results thus far demonstrate a connection between discrete choice models fea-
turing Gumbel-type preferences and parallel demands. The next section provides an
example where parallel demands are valuable as an economic tool.

4 Parallel demands as an economic tool: identification of the variety
effect

In this section,we showhow to use parallel demands to identify the change in consumer
surplus from an exogenous change in variety. Measuring the change in consumer
surplus due to a change in variety has been studied in many branches of economics,
including international trade and industrial organization (see Berry and Waldfogel
1999;Broda andWeinstein 2006;Dhingra andMorrow2019;Feenstra 1994).Webegin
with the standard definition of consumer surplus and derive the variety effect in the
general case.When there are newvarieties introduced into themarket, the variety effect
depends on all of the demands for the new goods. When there are many differentiated
products, as is typically the case in economic applications, this is a high dimension
problem with a large number of parameters to be estimated and we need to impose
some form of dimension reduction. We consider two complementary approaches:
symmetry and aggregation. First, we consider a symmetric product environment, as is
typically assumed in models in macro and trade, and show that we can characterize the
variety effect as the area between two inverse aggregate demand curves. Second, we
allow for heterogeneity in demands and prices but assume that prices are correlated
which allows us to aggregate; specifically, we assume that prices shift by the same
amount after the introduction of new varieties. This result relates to Hicks (1936) that
in order to aggregate goods into commodities, prices of the goods must be highly
correlated. The advantage of aggregation is that it permits one to be more flexible on
functional forms without having to specify underlying preferences. The disadvantage
is that prices may not be highly correlated.6

6 See discussion in Nevo (2011) for the dimensionality problem and alternative approaches to identifying
demand.
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4.1 Variety effect

Consider the general discrete choice model in Sect. 3.2 with J asymmetric products
and prices which are denoted by the vector pJ. There are no income effects which
means that consumer surplus is a valid measure of welfare and we can avoid the
problem of path dependence of price changes.

Definition 4 Let QJ (p) be the aggregate demand when there are J differentiated
products and prices are given by pJ = (p1, p2, . . . , pJ ). In this case, consumer
surplus is defined:

CS(pJ, J ) =
∫ ∞

0
QJ (pJ + s1J )ds (6)

When new varieties are introduced into the market, there are two effects on con-
sumer surplus. First, there is a “price effect” that arises sincemarket pricesmay change
when firms enter or exit the market. Second, there is a “variety effect” which captures
how much a new variety increases consumer surplus, holding prices constant. In this
section, we focus on the “variety effect” which we define as follows.

Definition 5 Let pJ0 = (p1, p2, . . . , pJ0) and pJ1 = (pJ0 , pJ0+1, . . . , pJ1). The
“variety effect” when the number of products goes from J0 to J1 (with J1 > J0)
is defined as:

Λ =
∫ ∞

0
QJ1(pJ1 + s1J1)ds −

∫ ∞

0
QJ0(pJ0 + s1J0)ds (7)

From Definition 5 we see identifying the variety effect requires identification of
aggregate demand before and after the change in varieties. In order tomake the problem
more tractable, we focus on two special cases: symmetric products and asymmetric
products with correlated prices (aggregation).

4.2 Symmetry

When all potentially existing products are symmetric, in the equilibium we have p j =
pk, ∀ j, k. Then we can use the definitions and foundations laid in Sect. 2 to simplify
the expressions of consumer surplus and the variety effect as follows. First, consumer
surplus is defined as the integral of aggregate demand:

CS(p, J ) =
∫ ∞

p
Q(s, J )ds (8)

Next, using the inverse demand P(Q, J ) we can adapt Definition 5 for the variety
effect when variety in the market changes from J0 to J1 to:

Λ =
∫ Q

0

(
P(s, J1) − P(s, J0)

)
ds (9)
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Fig. 1 Variety Effect. Notes:
This figure shows the result of a
decrease in variety (from J0 to
J1). The shaded area abcd
between the two demand curves
represents the variety effect

Q

P

P J0(Q)

P J1(Q)

a

b

c

d

f

e

g

h

P0

P1

Q1 Q0

where instead of holding fixed prices, we are holding fixed quantity, as this will prove
more useful in this section. The next result shows that, the variety effect can be calcu-
lated exactly in a simple form when we assume parallel demands.

Proposition 2 Starting from equilibrium quantity Q0 and price p0, under the assump-
tion of parallel demands (Definition 1), when variety changes from J0 to J1, the variety
effect can be equivalently expressed as:

Λ = Q0 ∗ d(J0, J1) (10)

where d(J0, J1) is such that P(Q, J0) + d(J0, J1) = P(Q, J1).

Proof See Appendix. �	
The price effect and variety effect are illustrated in Fig. 1 which considers a

reduction in product variety in the market from J0 to J1 . The price effect is rep-
resented by the area e f gh and the variety effect is given by the area abcd, so that
−ΔCS = abcd − cdg + e f gh, where cdg is an adjustment that is second-order rela-
tive toΔQ∗ΔJ . Intuitively, when the number of varieties is reduced, some consumers
will no longer be able to purchase their most preferred option. Thus, the maximum
willingness-to-pay for purchasing an inside good will be lower for these consumers.
This is represented as a downward shift in the inverse aggregate demand curve. The
area between the inverse aggregate demand curves abcd before and after the change
in variety up to initial quantity Q0 corresponds exactly to the variety effect.

We can now state our next Proposition, which uses Definition 1.

Proposition 3 Denote the equilibrium quantity Q0 and market price p0 when initial
variety is J0.Consider an exogenous increase in varieties from J0 to J1 and denote the
new equilibrium quantity Q1 and market price p1. Under the assumption of parallel
demands (Definition 1):

d(J0, J1) = p1 − P(Q1, J0) =
(

dp
d J
dQ
d J

− ∂P(Q, J )

∂Q

)
dQ

d J
�J + O((�J )2) (11)
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where ∂P(Q,J )
∂Q denotes the slope of inverse demand when variety J is held fixed and

dp
d J /

dQ
d J denotes the slope of inverse demand when J is variable.

Proof See Appendix. �	
When variety changes from J0 to J1, prices change from p0 to p1. However, this is

not sufficient to recover d(J0, J1). This is because the counterfactual price P(Q1, J0)
is not directly observable since it depends on the market price that would prevail at
the final level of output but on the original demand curve. To see how to recover
an expression for d(J0, J1) , we note from Fig. 1 that it must satisfy the following
relationship Q(p1, J1) = Q(p1 − d(J0, J1), J0). Thus, we can identify d(J0, J1) as
follows:

dQ = Q(p1, J1) − Q(p0, J0)

dQ = Q(p1 − d(J0, J1), J0) − Q(p0, J0)

dQ ≈ ∂Q(p, J )

∂ p
|p=p0(−d(J0, J1) + p1 − p0)

dQ= ∂Q

∂ p

∣∣∣∣
p=p0

(
−d(J0, J1) + dP

dQ
dQ

)

The first equality holds by definition. The second equality holds by Definition 1. The
third approximation holds by doing a Taylor expansion of Q(p, J ) around p0. The
fourth equality holds by definition. Rearranging and solving for d(J0, J1) yields:

d(J0, J1) ≈ dp − ∂P

∂Q
dQ

In economic terms, d(J0, J1) can be interpreted as the reduction in the willingness-
to-pay for the marginal unit. Under Definition 1, it can further be interpreted as the
change in willingness-to-pay for inframarginal units. In order to identify d(J0, J1),
two causal effects are required. First, one requires the effecs of an exogenous change

in variety on prices
(
dp
d J

)
and output

(
dQ
d J

)
. Second, one requires the effect of prices

on demand, holding variety fixed, ∂P
∂Q . Intuitively, when we multiply ∂P

∂QΔQ we are
implicitly calculating the counterfactual price that would hold when J0 varieties are
available and quantity is adjusted to Q1.

4.3 Numerical simulations

From Theorem 1 we know that when we have preferences in the form of (1) and
the random utility shocks follow the Gumbel distribution, we can apply the parallel
demands and compute ∂P

∂ J (Q′, J ) for any Q′ on the support of the aggregate demand
function. This saves us from integrating over the whole support. Moreover, from
Theorem 2 we have that as long as the random utility shocks (εi j ) are distributed
according to F in the domain of attraction of the Gumbel distribution, for any large
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Fig. 2 Approximate Parallel Demand Curves. Notes: This figure reports results from numerical simulations
that are designed to evaluate the quality of the key approximation theorem (Theorem 2) in the main text. By
simulating simple discrete choicemodels under different assumptions about the distribution of the i.i.d. error
terms and increasing the number of varieties in themarket, we calculate the (exact) variety effect numerically
and compare it to the variety effect that we would infer from assuming parallel demands. Consistent with
the result of Theorem 2, for distributions that satisfy assumptions of theorem, as J increases, the bias in the
variety effect from assuming parallel demands approaches zero

enough varieties, we have parallel demands as an approximation. In this subsection
we show these results in Monte Carlo simulations. We assess the parallel demands
assumption by simulating a model of a large number of consumers with utility over
products given by equation (1). We choose α = 1 and y = 1 in the simulation, and
we consider four different shock distributions (Gumbel, Normal, Exponential, and
Pareto). For each distribution, we consider a hypothetical 20 percent increase in the
number of products (from an initial value of J ), and we compute the exact change in
consumer surplus resulting from this change in variety by numerically integrating the
increase in consumer surplus across each consumer. Then, we compute the change
in consumer surplus implied by assuming parallel demands following equations (10)
and (11).

The results in Fig. 2 show that the bias that arises from assuming parallel demands is
a function of the number of varieties in themarket, measuring the bias as the difference
between the estimated and the exact change in consumer surplus. The benchmark
distribution is Gumbel, where we know from Theorem 1 that the demand curves are
exactly parallel, and therefore the bias is 0 for all initial values of J . For both the
Normal and Exponential distributions, we find that the bias is small in magnitude and
converges to 0 fairly quickly as the number of varieties increase. On the other hand,
with a Pareto distribution, there is a bias of roughly 20 percent, which does not vanish
as varieties increase. In this case, the change in consumer surplus from assuming
parallel demands is a lower bound on the true change in consumer surplus, and it does

123



K. Kroft et al.

not converge to 0 because the Pareto distribution is not in the domain of attraction of
the Gumbel distribution.

4.4 Aggregation

The previous results focus on the special case symmetric products, which allows for a
clear graphical representation since the inverse aggregate demand curve can be defined
for a uniform (symmetric) price. We now consider the case of asymmetric products.
The main objective in what follows is to give plausible and parsimonious sufficient
conditions to identify the variety effect using reduced-form methods based on local
information.

We first note that under the assumption of parallel shifts in WTP (Definition 3),
there exists some price index d(J0, J1) such that QJ1(pJ1 + s1J1) = QJ0(pJ0 + (s −
d(J0, J1))1J0) for all s ∈ R.7 In other words, increase prices starting from pJ0 by
some constant amount d = d(J0, J1) until total quantity demanded equals quantity
demanded when there are J1 products in the market. Under this assumption, it follows
that the variety effect can be expressed as:

Λ =
∫ d

0
QJ0(pJ0 + (s − d)1J0)ds.

Next, by the mean value theorem for integrals, there exists d ′ ∈ [0, d] such that

Λ = Q(pJ0 − d ′1J0) ∗ d.

This leads to the following result.

Proposition 4 Under the assumption of parallel shifts in WTP (Definition 3), when
variety changes from J0 to J1 , there exists d ′ ∈ [0, d(J0, J1)] such that

Λ = QJ0(pJ0 − d ′1J0) ∗ d(J0, J1). (12)

All that remains is to develop amethod to identifyd(J0, J1). To do this,we introduce
an additional technical assumption.

Assumption 4 The prices of the existing products in the market ( j = 1, . . . , J0) shift
by the same amount after the introduction of new varieties, i.e. p1j − p0j = p1k − p0k
for all products j, k available in both periods of time.

With this assumption in hand, we can now state our main result for asymmetric
products.

Proposition 5 Suppose that the assumption of parallel shifts inWTP (Definition 3) and
Assumption 4 holds. Let the post-entry equilibrium prices be pJ1 and define ΔP ≡
7 This is related to the price index in Feenstra (1994). However, in Feenstra (1994), the price index is
defined as the (common) price change that would have to occur when there are J0 goods in the market in
order to give the same utility as when there are J1 goods.
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ρ ∈ R to be the change in price of any of the existing products before and after entry
of new varieties. Letting ΔQ = QJ1(pJ1) − QJ0(pJ0), we have:

d(J0, J1) =
(

ΔP

ΔQ
− dP

dQJ0

∣∣∣∣
J0

)
ΔQ + O

(
(ρ − d)2

)
(13)

where dP
dQJ0

∣∣∣
J0

=
(
dQJ0 (pJ0+t1J0 )

dt

)−1
∣∣∣∣
t=0

.

Proof See Appendix. �	
Several features of Proposition 5 are worth highlighting. First, observe that the

key step for the Proposition to hold is to be able to find a ρ and d such that
QJ1(pJ1) = QJ0(pJ0 + (ρ − d)1J0). This requires both that all prices adjust uni-
formly after the introduction of the new varieties (Assumption 4) and that aggregate
demands shift in parallel (Definition 3). Restricting prices to adjust in the same direc-
tion 1J0 as the vertical shift d allows us to identify d by a simple application of the
Taylor approximation theorem.

Second, we interpret the directional derivative
dQJ0
dP

∣∣∣
J0

= dQ(pJ0+t1J0 )

dt =
∑J0

j=1
∂QJ0
∂ p j

as the short-run slope of aggregate demand in the direction of uniform
price changes, that connects the interpretation of (13) with equation (11) in the sym-
metric model. Furthermore, if we observe the change in aggregate demand QJ0 when
all prices are increased simultaneously, one does not need to identify each partial

derivative separately; instead it is sufficient to identify
dQJ0
dP

∣∣∣
J0
.

5 Conclusion

This paper highlights a previously-unnoticed feature of a class of discrete choice
models, which is that they feature parallel demand curves. Specifically, we show that
in additive random utility models, inverse aggregate demand curves shift in parallel
with respect to variety if and only if the random utility shocks follow the Gumbel
distribution. While it may seem that the parallel demands property is a special case,
our theoretical results suggest instead that parallel demands are a general property of
many discrete choice models. Specifically, using results from Extreme Value Theory,
we provide conditions for other distributions to generate parallel demand asymptoti-
cally, as the number of varieties increases. We illustrate these results using numerical
simulations and extend them to cover correlated tastes and asymmetric products.

Given the generality of our theoretical results, we provide an application and show
that parallel demands are useful to identifiy the change in consumer surplus from
a change in variety. In this application, parallel demands provide a straightforward
identification approach–intuitively, identifiying the “vertical gap” at one point in the
aggregate demand curve is sufficient for identifying the entire area between the inverse
aggregate demand curves before and after the change in variety. Because of this,
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we view the parallel demands property as a tool that can potentially be used for
both producing theoretical results on the value of variety (which can be an input into
theoretical analysis of whether the equilibrium level of variety is socially optimal)
as well as a tool for empirical work, where the parallel demands assumption may be
used as an alternative “reduced-form” identification approach (instead of relying on
specific structural models of consumer demand for identification).

We conclude by speculating that parallel demands may also be a useful property
when studying other economic questions. Discrete choice models are widespread in
economics, and our theoretical results may therefore be useful in other economic
settings, such as the choice of neighborhood (Bayer et al. 2007; McFadden 1978),
occupation (Hsieh et al. 2013), firm (Card et al. 2018; Chan et al. 2019; Lamadon
et al. 2020), and school (Dinerstein and Smith 2014). In all of these settings, as long as
the parallel demands assumption holds, thewelfare effects corresponding to changes in
the number of available choices (or “varieties”) may be calculated using the approach
described in this paper.

Appendix

Proofs of Claims, Propositions, and Theorems

Proof of Theorem 1

Proof Assuming symmetric prices the inverse demands when there are J0 and J1
varieties are parallel if and only if there exists a d(J0, J1) such that for all p then
Q(p, J ) = Q(p + d(J0, J1), J1); that is

P(ε0m < δ − α p + max
1≤ j≤J0

ε j ) = P(ε0m < δ − α(p + d(J0, J1)) + max
1≤ j≤J1

ε j ).

Since ε0m is independent of max1≤ j≤J0 ε j this can only be true if the distribution
of the maxima for J0 and J1 of ε j for j ≥ 1 is the same, that is

max
1≤ j≤J0

ε j
d= −αd(J0, J1) + max

1≤ j≤J1
ε j

Let F be the CDF of ε, then the equation above implies that for all natural number
n there exists t(n) such that for all x :

F(x) = Fn(x + t(n)).

Iterating on both sides implies

Fnm(x + t(nm)) = Fnm(x + t(n) + t(m))
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we recognize an instance of the functional equation t(nm) = t(n) + t(m) which has
the unique solution t(n) = c log(n).8 Therefore:

F(x) = Fy(x + c log y),

letting x = 0, s = c log y, we get F(0) = Fes/c(s), and so:

F(s) = elog F(0)e−s/c
,

which is a Gumbel distribution with location parameter c log(− log F(0)) and dis-
persion parameter c. This derivation proves that the parallel demands condition
implies that the random utility shocks (εi j )

∞
j=1 follow the Gumbel distribution.

Moreover, if the random utility shocks (εi j )
∞
j=1 follow the Gumbel distribution then

F(x) = elog F(0)e−x/c
and Fn(x) = elog F(0)elog(n)−x/c = F (x − clog(n)) and so par-

allel demands hold:

P

(
ε0m < δ − α p + max

1≤ j≤J0
ε j

)

= P

(
ε0m < δ − α(p + clog(J1) − clog(J0)) + max

1≤ j≤J1
ε j

)
.

�	

Proof of Theorem 2

Proof Let the random utility shocks (ε j ) be i.i.d. and distributed according to F in the
domain of attraction of the Gumbel distribution. Let G(x) = exp[−exp(−x)] be the
Gumbel distribution. Then there exist sequences (an, bn) such that

Fn(anx + bn) → G(x),

Furthermore, limn→∞ an
a[nt] = 1 and limn→∞ bn−b[nt]

a[nt] = −c log(t) for any t > 0 and
some c ∈ R where [nt] is the integer part of nt (see Resnick (1987) Chapter 1). Since
the convergence Fn(anx + bn) → G(x) is uniform (see Resnick (1987) Chapter 0)
and Fn is uniformly continuous, then for any ε > 0 there exists η and N (η, ε) such

8 It is easy to extend the formula for real numbers through rationals, note

F(x) = Fn(x + t(n)) = Fm (x + t(m))

implies

F(x) = Fn/m (x + t(n) − t(m)),

so we can consistently define t(n/m) = t(n) − t(m).

123



K. Kroft et al.

that for all x ∈ R and all J0, J1 > N (η, ε) we have
∣∣∣ aJ1aJ0

− 1
∣∣∣ ≤ η and

∣∣∣F J0(aJ0x + bJ0) − F J1(aJ0x + bJ1)
∣∣∣ ≤

∣∣∣F J0(aJ0x + bJ0) − F J1(aJ1x + bJ1)
∣∣∣

+
∣∣∣F J1(aJ1x + bJ1) − F J1(aJ0x + bJ1)

∣∣∣
< ε

Therefore, for any p ∈ R

∣∣Q(p, J0) − Q
(
p + bJ1 − bJ0 , J1

)∣∣
=

∣∣∣∣P
(

max
j∈{1,...,J0}

ui j (p) > ui0

)
− P

(
max

j∈{1,...,J1}
ui j (p + bJ1 − bJ0 ) > ui0

)∣∣∣∣
=

∣∣∣∣
∫
R

(
F J1

(
εi0 − α(y − p) − δ + α(bJ1 − bJ0 )

) − F J0 (εi0 − α(y − p) − δ)
)
f0(εi0)dεi0

∣∣∣∣
< ε

where f0 is the probability density of εi0. We conclude that the inverse aggregate
demands are asymptotically parallel. �	

Proof of Proposition 1

Proof Redefine ε̃i0 = εi0 − (1 − σ)νi . Then the proof follows from Theorem 1. �	

Proof of Theorem 3

Proof Let F be the CDF of the random utility shocks. Define Condition A as: for all
(δn)

J0
n=1 bounded vector of real non-negative numbers there exists f ((δn)

J0
n=1) such that

F(x) = Πn=1F
(
x − δn + f ((δn)

J0
n=1)

)
. Theorem 1 applies for vectors of constants

(δ, . . . , δ) of any size, and shows that the only possible candidate CDF F that satisfies
conditionAmust beGumbel. Therefore if ConditionA is going to hold for any (δn)

J0
n=1

bounded vector of real non-negative numbers, then F must be Gumbel. Condition A
is a rephrasing of parallel WTP CDFs and so, Gumbel is necessary for parallel WTP
CDFs.

Moreover, if
(
εi j

) ∞
j=1 are i.i.d. Gumbel then δ j +εi j ∼ Fj (μ j , β) are also Gumbel,

where μ j is the position parameter of the Gumbel distribution and β is the scale
parameter ({μ j } is well defined, because {δ j } is bounded.) Then

P
(
δ j + εi j < x

) = Fj (x)

= exp

(
−exp

(
μ j − x

β

))
.

Let j∗ = argmax j∈J0{δ j + εi j }, we have

Fj∗(x) = Π j∈J0Fj (x)
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= exp(−Σ j∈J0exp(
μ j − x

β
))

= exp(−exp(
μ − x

β
)),

where μ = βlog
∑

j∈J0 exp(
μ j
β

).
Similarly, let j∗∗ = argmax j∈J1{δ j + εi j } for J1 �= J . We have

Fj∗∗(x) = exp

(
−exp

(
μ′ − x

β

))

where μ′ = βlog
∑

j∈J1 exp(
μ j
β

). The above derivation shows that we have parallel
WTP distributions by letting

tJ1 = μ′ − μ

= βlog

∑
j∈J1 exp(

μ j
β

)

Π
∑

j∈J0 exp(
μ j
β

)
.

�	

Proof of Theorem 4

Proof Take (αn, βn) and the nondegenarate CDF H such that Πn
j=1F(αnx + βn −

δ j ) → H(x) for all x . Because

Fn(αnx + βn) ≤ Πn
j=1F(αnx + βn − δ j ) ≤ Fn(αnx + βn)

and by continuity, there exists γn∈ [0, K ] such that Πn
j=1F(αnx + βn − δ j ) =

Fn(αnx + γn) → H(x). But because F is in the domain of attratcion of the Gumbel,
by Proposition 0.2 of Resnick (1987) there exists a and b such that H(x) = G(ax+b)
is a rescaling of the Gumbel distribution.

The rest of the proof follows exactly the same steps as the proof of Theorem 1,
starting from Πn

j=1F(αnx + βn − δ j ) → G(x). We have limn→∞ an
a[nt] = 1 and

limn→∞ γn−γ[nt]
a[nt] = −c log(t) for any t > 0 and some c ∈ R where [nt] is the integer

part of nt (see Resnick (1987) Chapter 1).
Since the convergenceΠn

j=1F(αnx+βn−δ j ) = Fn(αnx+γn) → G(x) is uniform
(see Resnick (1987) Chapter 0) and Fn is uniformly continuous, then for any ε > 0
there exists η and N (η, ε) such that for all x ∈ R and all J0, J1 > N (η, ε) we have∣∣∣ aJ1aJ0

− 1
∣∣∣ ≤ η and

∣∣∣F J0(aJ0x + γJ0) − F J1(aJ0x + γJ1)

∣∣∣ ≤
∣∣∣F J0(aJ0x + γJ0) − F J1(aJ1x + γJ1)

∣∣∣
+

∣∣∣F J1(aJ1x + γJ1) − F J1(aJ0x + γJ1)

∣∣∣
< ε
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Therefore, for any p ∈ R

∣∣∣∣P (WT Pi (J0) ≤ x) − P

(
WT Pi (J1) ≤ x + γJ1 − γJ0

α

)∣∣∣∣
=

∣∣∣∣P
(

max
j∈{1,...,J0}

{ δ j + εi j − εi0

α
} ≤ x

)
− P

(
max

j∈{1,...,J1}
{ δ j + εi j − εi0

α
} ≤ x + γJ1 − γJ0

α

)∣∣∣∣
=

∣∣∣∣
∫
R

(
F J1

(
αx + εi0 − δ j + γJ1 − γJ0

) − F J0
(
αx + εi0 − δ j

))
f0(εi0)dεi0

∣∣∣∣
< ε

where f0 is the probability density of εi0. We conclude that the willingness-to-pay
densities are asymptotically parallel. �	

Proof of Proposition 2

Proof Assume parallel demands (Definition 1) and let d(J0, J1) be such that
P(Q, J0) + d(J0, J1) = P(Q, J1). Then Λ = ∫ Q

0

(
P(s, J1) − P(s, J0)

)
ds =

d(J0, J1) ∗ Q. �	

Proof of Proposition 3

Proof Observe:

d(J0, J1) = p1 − P(Q1, J0)

=
(

p1 − p0
Q1 − Q0

− P(Q1, J0) − p0
Q1 − Q0

)
(Q1 − Q0)

Now assume (p(J ), Q(J ))J∈R is a continuously differentiable interpolation of
(p(J ), Q(J ))J∈N which exists by the Stone-Weierstrass theorem. Then by the Taylor
approximation theorem:

d(J0, J1) =
(

p1 − p0
Q1 − Q0

− P(Q1, J0) − p0
Q1 − Q0

)
(Q1 − Q0)

=
(

dp
d J
dQ
d J

− ∂P(Q, J )

∂Q

)
dQ

d J
�J + O((�J )2)

�	

Proof of Proposition 5

Proof Let d = d(J0, J1). Observe by assumption QJ1(pJ1) = QJ0(pJ0 +(ρ−d)1J0),
then the second part of the theorem follows directly from the first-order Taylor approx-
imation:

QJ1(pJ1) = QJ0(pJ0) + (ρ − d)
dQJ0(pJ0 + t1J0)

dt
+ O

(
(ρ − d)2

)

123



Parallel inverse aggregate demand curves in discrete choice models

where
dQJ0 (pJ0+t1J0 )

dt is the directional derivative in the direction 1J0 . And so

d =
(

ρ

ΔQ
−

(
dQJ0(pJ0 + t1J0)

dt

)−1
)

ΔQ + O
(
(ρ − d)2

)

�	
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